Factorise : $49 a^{2}+70 a b+25 b^{2}$
Here you can see that
$49 a^{2}=(7 a)^{2}, 25 b^{2}=(5 b)^{2}, 70 a b=2(7 a)(5 b)$
Comparing the given expression with $x^{2}+2 x y+y^{2},$ we observe that $x=7 a$ and $y=5 b$ Using Identity $I$, we get
$49 a^{2}+70 a b+25 b^{2}=(7 a+5 b)^{2}=(7 a+5 b)(7 a+5 b)$
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$
Find the value of each of the following polynomials at the indicated value of variables : $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$ at $t=a$.
Find the value of $k,$ if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.
Evaluate using suitable identities : $(999)^{3}$